
2010.2 OOP Handout 1 : Factors of Software Quality
 
* What is a good software (program)?

- correct : correctly satisfy user requirement/specification
- efficient (space / time) , HW utilization
- easy to maintain (software evolution)

- easy to read (readablity)
- easy to debug , easy to test
- easy to modify
- easy to extend(extensibility) , scalability
- easy to reuse (reusability)
- easy to port (portability) , platform-independent

- stable (stability), reliable (reliability)
- easy to use (usability) , easy to run
- concise (conciseness)
- secure (security)
- complete (completeness)
- consistent (consistency)
- well documented
- well structured

 
* Factors of Software Quality

 Understandability
Are variable names descriptive of the physical or functional property represented? Do uniquely 
recognisable functions contain adequate comments so that their purpose is clear? Are deviations from 
forward logical flow adequately commented? Are all elements of an array functionally related?...

Completeness
Are all necessary components available? Does any process fail for lack of resources or programming? 
Are all potential pathways through the code accounted for, including proper error handling?

Conciseness
Is all code reachable? Is any code redundant? How many statements within loops could be 
placed outside the loop, thus reducing computation time? Are branch decisions too complex?

Portability
Does the program depend upon system or library routines unique to a particular installation? Have 
machine-dependent statements been flagged and commented? Has dependency on internal bit 
representation of alphanumeric or special characters been avoided? How much effort would be 
required to transfer the program from one hardware/software system or environment to another?

Consistency
Is one variable name used to represent different logical or physical entities in the program? Does 
the program contain only one representation for any given physical or mathematical constant? Are 
functionally similar arithmetic expressions similarly constructed? Is a consistent scheme used for 
indentation, nomenclature, the color palette, fonts and other visual elements?



Maintainability
Has some memory capacity been reserved for future expansion? Is the design cohesive—i.e., does each 
module have distinct, recognizable functionality? Does the software allow for a change in data structures 
(object-oriented designs are more likely to allow for this)? If the code is procedure-based (rather 
than object-oriented), is a change likely to require restructuring the main program, or just a module?

Testability
Are complex structures employed in the code? Does the detailed design contain clear pseudo-code? Is 
the pseudo-code at a higher level of abstraction than the code? If tasking is used in concurrent designs, 
are schemes available for providing adequate test cases?

Usability
Is a GUI used? Is there adequate on-line help? Is a user manual provided? Are meaningful error 
messages provided?

Reliability
Are loop indexes range-tested? Is input data checked for range errors? Is divide-by-zero avoided? 
Is exception handling provided? It is the probability that the software performs its intended functions 
correctly in a specified period of time under stated operation conditions. but there could also be a problem 
with the requirement document...

Efficiency
Have functions been optimized for speed? Have repeatedly used blocks of code been formed into 
subroutines? Has the program been checked for memory leaks or overflow errors?

Security
Does the software protect itself and its data against unauthorized access and use? Does it allow its 
operator to enforce security policies? Are security mechanisms appropriate, adequate and correctly 
implemented? Can the software withstand attacks that can be anticipated in its intended environment?

User's perspective
In addition to the technical qualities of software, the end user's experience also determines the quality of 
software. This aspect of software quality is called usability. It is hard to quantify the usability of a given 
software product. Some important questions to be asked are:

● Is the user interface intuitive (self-explanatory/self-documenting)?

● Is it easy to perform simple operations?

● Is it feasible to perform complex operations?

● Does the software give sensible error messages?

● Do widgets behave as expected?

● Is the software well documented?

● Is the user interface responsive or too slow?
Also, the availability of (free or paid) support may factor into the usability of the software.

 

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUsability&sa=D&sntz=1&usg=AFQjCNGcHLxLRURUGXxvoC6XAfw7xxOYUg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FUser_interface&sa=D&sntz=1&usg=AFQjCNFpK4MCqa1ZF4fKe0u1q0HIPI5IGQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSelf-documenting&sa=D&sntz=1&usg=AFQjCNH1SgBfjL13OoJ9JCqG3oNXYvuwoQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FError_message&sa=D&sntz=1&usg=AFQjCNGKQe7PnHFpkqLjRJ4GigrtWiQGJg
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWidget_(computing)&sa=D&sntz=1&usg=AFQjCNEs8RJJOnFXWhJB9D4ncOe9DvsbZQ
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSoftware_documentation&sa=D&sntz=1&usg=AFQjCNHFP4PHKsyLU0AcR53uDXOIra5VBg

