
Chapter 3

Object-Oriented Design

A cursory explanation of object-oriented programming tends to emphasize the
syntactic features of languages such as C++ or Delphi, as opposed to their older,
non object-oriented versions, C or Pascal. Thus, an explanation usually turns
rather quickly to issues such as classes and inheritance, message passing, and
virtual and static methods. But such a description will miss the most important
point of object-oriented programming, which has nothing to do with syntax.

Working in an object-oriented language (that is, one that supports inheri-
tance, message passing, and classes) is neither a necessary nor su�cient condi-
tion for doing object-oriented programming. As we emphasized in Chapters 1
and 2, the most important aspect of OOP is the creation of a universe of largely
autonomous interacting agents. But how does one come up with such a system?
The answer is a design technique driven by the determination and delegation of
responsibilities. The technique described in this chapter is termed responsibility-

driven design.1

3.1 Responsibility Implies Noninterference

As anyone can attest who can remember being a child, or who has raised children,
responsibility is a sword that cuts both ways. When you make an object (be
it a child or a software system) responsible for speci�c actions, you expect a
certain behavior, at least when the rules are observed. But just as important,
responsibility implies a degree of independence or noninterference. If you tell a
child that she is responsible for cleaning her room, you do not normally stand

1The past few years have seen a poli�eration of object-oriented design techniques. See
the section on further reading at the end of this chapter for pointers to some of the
alternatives. I have selected Responsibility-driven design, developed by Rebecca Wirfs-
brock [Wirfs-Brock 1989b, Wirfs-Brock 1990] because it is one of the simplest, and it facilitates
the transition from design to programming. Also in this chapter I introduce some of the nota-
tional techniques made popular by the Uni�ed Modelling Language, or UML. However, space
does not permit a complete introduction to UML, nor is it necessary for an understanding of
subsequent material in the book.

49



50 CHAPTER 3. OBJECT-ORIENTED DESIGN

over her and watch while that task is being performed{that is not the nature of
responsibility. Instead, you expect that, having issued a directive in the correct
fashion, the desired outcome will be produced.

Similarly, in the owers example from Chapter 1, when Chris gave the request
to the Florist to deliver owers to Robin, it was not necessary to stop to think
about how the request would be serviced. The orist, having taken on the
responsibility for this service, is free to operate without interference on the part
of the customer Chris.

The di�erence between conventional programming and object-oriented pro-
gramming is in many ways the di�erence between actively supervising a child
while she performs a task, and delegating to the child responsibility for that
performance. Conventional programming proceeds largely by doing something
to something else{modifying a record or updating an array, for example. Thus,
one portion of code in a software system is often intimately tied, by control and
data connections, to many other sections of the system. Such dependencies can
come about through the use of global variables, through use of pointer values, or
simply through inappropriate use of and dependence on implementation details
of other portions of code. A responsibility-driven design attempts to cut these
links, or at least make them as unobtrusive as possible.

This notion might at �rst seem no more subtle than the concepts of infor-
mation hiding and modularity, which are important to programming even in
conventional languages. But responsibility-driven design elevates information
hiding from a technique to an art. This principle of information hiding becomes
vitally important when one moves from programming in the small to program-
ming in the large.

One of the major bene�ts of object-oriented programming occurs when soft-
ware subsystems are reused from one project to the next. For example, a sim-
ulation manager (such as the one we will develop in Chapter 7) might work for
both a simulation of balls on a billiards table and a simulation of �sh in a �sh
tank. This ability to reuse code implies that the software can have almost no
domain-speci�c components; it must totally delegate responsibility for domain-
speci�c behavior to application-speci�c portions of the system. The ability to
create such reusable code is not one that is easily learned{it requires experience,
careful examination of case studies (paradigms, in the original sense of the word),
and use of a programming language in which such delegation is natural and easy
to express. In subsequent chapters, we will present several such examples.

3.2 Programming in the Small and in the Large

The di�erence between the development of individual projects and of more siz-
able software systems is often described as programming in the small versus
programming in the large.

Programming in the small characterizes projects with the following attributes:

� Code is developed by a single programmer, or perhaps by a very small



3.3. WHY BEGIN WITH BEHAVIOR? 51

collection of programmers. A single individual can understand all aspects
of a project, from top to bottom, beginning to end.

� The major problem in the software development process is the design and
development of algorithms for dealing with the problem at hand.

Programming in the large, on the other hand, characterizes software projects
with features such as the following:

� The software system is developed by a large team, often consisting of people
with many di�erent skills. There may be graphic artists, design experts, as
well as programmers. Individuals involved in the speci�cation or design of
the system may di�er from those involved in the coding of individual com-
ponents, who may di�er as well from those involved in the integration of
various components in the �nal product. No single individual can be con-
sidered responsible for the entire project, or even necessarily understands
all aspects of the project.

� The major problem in the software development process is the management
of details and the communication of information between diverse portions
of the project.

While the beginning student will usually be acquainted with programming
in the small, aspects of many object-oriented languages are best understood as
responses to the problems encountered while programming in the large. Thus,
some appreciation of the di�culties involved in developing large systems is a
helpful prerequisite to understanding OOP.

3.3 Why Begin with Behavior?

Why begin the design process with an analysis of behavior? The simple answer
is that the behavior of a system is usually understood long before any other
aspect.

Earlier software development methodologies (those popular before the ad-
vent of object-oriented techniques) concentrated on ideas such as characterizing
the basic data structures or the overall structure of function calls, often within
the creation of a formal speci�cation of the desired application. But structural
elements of the application can be identi�ed only after a considerable amount
of problem analysis. Similarly, a formal speci�cation often ended up as a docu-
ment understood by neither programmer nor client. But behavior is something
that can be described almost from the moment an idea is conceived, and (often
unlike a formal speci�cation) can be described in terms meaningful to both the
programmers and the client.

Responsibility-Driven Design (RDD), developed by Rebecca Wirfs-Brock, is
an object-oriented design technique that is driven by an emphasis on behavior
at all levels of development. It is but one of many alternative object-oriented



52 CHAPTER 3. OBJECT-ORIENTED DESIGN

'

&

$

%

Welcome

to the

IIKH

the

Interactive

Intelligent

Kitchen

Helper

Press Return

to begin

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��22222222

222222222

2222222

HH
HH

HH
H

��
��

��

��
��

��P
PP

PPP
��
PP

PP
PP

HH
HH

HH
H

HH
HH

HH
H

��
HH

HH
HH

H
��

��
���

PP
PP

PP

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

HH
HH

HH
H

Figure 3.1: { View of the Interactive Intelligent Kitchen Helper.

design techniques. We will illustrate the application of Responsibility-Driven
Design with a case study.

3.4 A Case Study in RDD

Imagine you are the chief software architect in a major computer �rm. One day
your boss walks into your o�ce with an idea that, it is hoped, will be the next
major success in your product line. Your assignment is to develop the Interactive
Intelligent Kitchen Helper (Figure 3.1).

The task given to your software team is stated in very few words (written
on what appears to be the back of a slightly-used dinner napkin, in handwriting
that appears to be your boss's).

3.4.1 The Interactive Intelligent Kitchen Helper

Briey, the Interactive Intelligent Kitchen Helper (IIKH) is a PC-based appli-
cation that will replace the index-card system of recipes found in the average
kitchen. But more than simply maintaining a database of recipes, the kitchen
helper assists in the planning of meals for an extended period, say a week. The



3.4. A CASE STUDY IN RDD 53

user of the IIKH can sit down at a terminal, browse the database of recipes,
and interactively create a series of menus. The IIKH will automatically scale the
recipes to any number of servings and will print out menus for the entire week,
for a particular day, or for a particular meal. And it will print an integrated
grocery list of all the items needed for the recipes for the entire period.

As is usually true with the initial descriptions of most software systems,
the speci�cation for the IIKH is highly ambiguous on a number of important
points. It is also true that, in all likelihood, the eventual design and development
of the software system to support the IIKH will require the e�orts of several
programmers working together. Thus, the initial goal of the design team must
be to clarify the ambiguities in the description and to outline how the project
can be divided into components to be assigned for development to individual
team members.

The fundamental cornerstone of object-oriented programming is to charac-
terize software in terms of behavior; that is, actions to be performed. We will
see this repeated on many levels in the development of the IIKH. Initially, the
team will try to characterize, at a very high level of abstraction, the behavior
of the entire application. This then leads to a description of the behavior of
various software subsystems. Only when all behavior has been identi�ed and
described will the software design team proceed to the coding step. In the next
several sections we will trace the tasks the software design team will perform in
producing this application.

3.4.2 Working through Scenarios

The �rst task is to re�ne the speci�cation. As we have already noted, initial
speci�cations are almost always ambiguous and unclear on anything except the
most general points. There are several goals for this step. One objective is
to get a better handle on the \look and feel" of the eventual product. This
information can then be carried back to the client (in this case, your boss) to see
if it is in agreement with the original conception. It is likely, perhaps inevitable,
that the speci�cations for the �nal application will change during the creation of
the software system, and it is important that the design be developed to easily
accommodate change and that potential changes be noted as early as possible.
Equally important, at this point very high level decisions can be made concerning
the structure of the eventual software system. In particular, the activities to be
performed can be mapped onto components.

In order to uncover the fundamental behavior of the system, the design team
�rst creates a number of scenarios. That is, the team acts out the running of
the application just as if it already possessed a working system. An example
scenario is shown in Figure 3.2.



54 CHAPTER 3. OBJECT-ORIENTED DESIGN

Simple Browsing

Alice Smith sits down at her computer and starts the IIKH. When the program
begins, it displays a graphical image of a recipe box, and identi�es itself as the
IIKH, product of IIKH incorporated. Alice presses the return button to begin.

In response to the key press, Alice is given a choice of a number of options. She
elects to browse the recipe index, looking for a recipe for Salmon that she wishes to
prepare for dinner the next day. She enters the keyword Salmon, and is shown in
response a list of various recipes. She remembers seeing an interesting recipe that
used dill-weed as a avoring. She re�nes the search, entering the words Salmon and
dill-weed. This narrows the search to two recipes.

She selects the �rst. This brings up a new window in which an attractive picture
of the �nished dish is displayed, along with the list of ingredients, preparation steps,
and expected preparation time. After examining the recipe, Alice decides it is not
the recipe she had in mind. She returns to the search result page, and selects the
second alternative.

Examining this dish, Alice decides this is the one she had in mind. She requests
a printing of the recipe, and the output is spooled to her printer. Alice selects
\quit" from a program menu, and the application quits.

Figure 3.2: An Example Scenario



3.5. CRC CARDS{RECORDING RESPONSIBILITY 55

3.4.3 Identi�cation of Components

The engineering of a complex physical system, such as a building or an auto-
mobile engine, is simpli�ed by dividing the design into smaller units. So, too,
the engineering of software is simpli�ed by the identi�cation and development
of software components. A component is simply an abstract entity that can
perform tasks{that is, ful�ll some responsibilities. At this point, it is not nec-
essary to know exactly the eventual representation for a component or how a
component will perform a task. A component may ultimately be turned into a
function, a structure or class, or a collection of other components. At this level
of development there are just two important characteristics:

� A component must have a small well-de�ned set of responsibilities.

� A component should interact with other components to the minimal extent
possible.

We will shortly discuss the reasoning behind the second characteristic. For the
moment we are simply concerned with the identi�cation of component responsi-
bilities.

3.5 CRC Cards{Recording Responsibility

As the design team walks through the various scenarios they have created, they
identify the components that will be performing certain tasks. Every activity
that must take place is identi�ed and assigned to some component as a respon-
sibility.

Component Name Collaborators

List of

other components
Description of the

responsibilities assigned

to this component



56 CHAPTER 3. OBJECT-ORIENTED DESIGN

As part of this process, it is often useful to represent components using small
index cards. Written on the face of the card is the name of the software compo-
nent, the responsibilities of the component, and the names of other components
with which the component must interact. Such cards are sometimes known as
CRC (Component, Responsibility, Collaborator) cards, and are associated with
each software component. As responsibilities for the component are discovered,
they are recorded on the face of the CRC card.

3.5.1 Give Components a Physical Representation

While working through scenarios, it is useful to assign CRC cards to di�erent
members of the design team. The member holding the card representing a com-
ponent records the responsibilities of the associated software component, and
acts as the \surrogate" for the software during the scenario simulation. He or
she describes the activities of the software system, passing \control" to another
member when the software system requires the services of another component.

An advantage of CRC cards is that they are widely available, inexpensive,
and erasable. This encourages experimentation, since alternative designs can be
tried, explored, or abandoned with little investment. The physical separation of
the cards encourages an intuitive understanding of the importance of the logical
separation of the various components, helping to emphasize the cohesion and
coupling (which we will describe shortly). The constraints of an index card are
also a good measure of approximate complexity{a component that is expected to
perform more tasks than can �t easily in this space is probably too complex, and
the team should �nd a simpler solution, perhaps by moving some responsibilities
elsewhere to divide a task between two or more new components.

3.5.2 The What/Who Cycle

As we noted at the beginning of this discussion, the identi�cation of components
takes place during the process of imagining the execution of a working system.
Often this proceeds as a cycle of what/who questions. First, the design team
identi�es what activity needs to be performed next. This is immediately followed
by answering the question of who performs the action. In this manner, designing
a software system is much like organizing a collection of people, such as a club.
Any activity that is to be performed must be assigned as a responsibility to some
component.

A popular bumper sticker states that phenomena can and will spontaneously
occur. (The bumper sticker uses a slightly shorter phrase.) We know, however,
that in real life this is seldom true. If any action is to take place, there must be
an agent assigned to perform it. Just as in the running of a club any action to be
performed must be assigned to some individual, in organizing an object-oriented
program all actions must be the responsibility of some component. The secret
to good object-oriented design is to �rst establish an agent for each action.



3.6. COMPONENTS AND BEHAVIOR 57

3.5.3 Documentation

At this point the development of documentation should begin. Two documents
should be essential parts of any software system: the user manual and the system
design documentation. Work on both of these can commence even before the
�rst line of code has been written.

The user manual describes the interaction with the system from the user's
point of view; it is an excellent means of verifying that the development team's
conception of the application matches the client's. Since the decisions made in
creating the scenarios will closely match the decisions the user will be required to
make in the eventual application, the development of the user manual naturally
dovetails with the process of walking through scenarios.

Before any actual code has been written, the mindset of the software team
is most similar to that of the eventual users. Thus, it is at this point that the
developers can most easily anticipate the sort of questions to which a novice
user will need answers. A user manual is also an excellent tool to verify that
the programming team is looking at the problem in the same way that the client
intended. A client seldom presents the programming team with a complete and
formal speci�cation, and thus some reassurance and two-way communication
early in the process, before actual programming has begun, can prevent major
misunderstandings.

The second essential document is the design documentation. The design
documentation records the major decisions made during software design, and
should thus be produced when these decisions are fresh in the minds of the
creators, and not after the fact when many of the relevant details will have been
forgotten. It is often far easier to write a general global description of the software
system early in the development. Too soon, the focus will move to the level of
individual components or modules. While it is also important to document the
module level, too much concern with the details of each module will make it
di�cult for subsequent software maintainers to form an initial picture of the
larger structure.

CRC cards are one aspect of the design documentation, but many other
important decisions are not reected in them. Arguments for and against any
major design alternatives should be recorded, as well as factors that inuenced
the �nal decisions. A log or diary of the project schedule should be maintained.
Both the user manual and the design documents are re�ned and evolve over time
in exactly the same way the software is re�ned and evolves.

3.6 Components and Behavior

To return to the IIKH, the team decides that when the system begins, the user
will be presented with an attractive informative window (see Figure 3.1). The
responsibility for displaying this window is assigned to a component called the
Greeter. In some as yet unspeci�ed manner (perhaps by pull-down menus, button



58 CHAPTER 3. OBJECT-ORIENTED DESIGN

Greeter Collaborators

Database Manager

Plan Manager
Display Informative Initial Message

O�er User Choice of Options

Pass Control to either

Recipe Database Manager

Plan Manager for processing

Figure 3.3: { CRC card for the Greeter.

or key presses, or use of a pressure-sensitive screen), the user can select one of
several actions. Initially, the team identi�es just �ve actions:

1. Casually browse the database of existing recipes, but without reference to
any particular meal plan.

2. Add a new recipe to the database.

3. Edit or annotate an existing recipe.

4. Review an existing plan for several meals.

5. Create a new plan of meals.

These activities seem to divide themselves naturally into two groups. The
�rst three are associated with the recipe database; the latter two are associated
with menu plans. As a result, the team next decides to create components
corresponding to these two responsibilities. Continuing with the scenario, the
team elects to ignore the meal plan management for the moment and move on
to re�ne the activities of the Recipe Database component. Figure 3.3 shows the
initial CRC card representation of the Greeter.

Broadly speaking, the responsibility of the recipe database component is
simply to maintain a collection of recipes. We have already identi�ed three
elements of this task: The recipe component database must facilitate browsing
the library of existing recipes, editing the recipes, and including new recipes in
the database.



3.6. COMPONENTS AND BEHAVIOR 59

3.6.1 Postponing Decisions

There are a number of decisions that must eventually be made concerning how
best to let the user browse the database. For example, should the user �rst
be presented with a list of categories, such as \soups," \salads," \main meals,"
and \desserts"? Alternatively, should the user be able to describe keywords to
narrow a search, perhaps by providing a list of ingredients, and then see all the
recipes that contain those items (\Almonds, Strawberries, Cheese"), or a list
of previously inserted keywords (\Bob's favorite cake")? Should scroll bars be
used or simulated thumb holes in a virtual book? These are fun to think about,
but the important point is that such decisions do not need to be made at this
point (see Section 3.6.2, \Preparing for Change"). Since they a�ect only a single
component, and do not a�ect the functioning of any other system, all that is
necessary to continue the scenario is to assert that by some means the user can
select a speci�c recipe.

3.6.2 Preparing for Change

It has been said that all that is constant in life is the inevitability of uncertainty
and change. The same is true of software. No matter how carefully one tries
to develop the initial speci�cation and design of a software system, it is almost
certain that changes in the user's needs or requirements will, sometime during
the life of the system, force changes to be made in the software. Programmers
and software designers need to anticipate this and plan accordingly.

� The primary objective is that changes should a�ect as few components
as possible. Even major changes in the appearance or functioning of an
application should be possible with alterations to only one or two sections
of code.

� Try to predict the most likely sources of change and isolate the e�ects
of such changes to as few software components as possible. The most
likely sources of change are interfaces, communication formats, and output
formats.

� Try to isolate and reduce the dependency of software on hardware. For
example, the interface for recipe browsing in our application may depend
in part on the hardware on which the system is running. Future releases
may be ported to di�erent platforms. A good design will anticipate this
change.

� Reducing coupling between software components will reduce the depen-
dence of one upon another, and increase the likelihood that one can be
changed with minimal e�ect on the other.

� In the design documentation maintain careful records of the design process
and the discussions surrounding all major decisions. It is almost certain



60 CHAPTER 3. OBJECT-ORIENTED DESIGN

that the individuals responsible for maintaining the software and designing
future releases will be at least partially di�erent from the team producing
the initial release. The design documentation will allow future teams to
know the important factors behind a decision and help them avoid spending
time discussing issues that have already been resolved.

3.6.3 Continuing the Scenario

Each recipe will be identi�ed with a speci�c recipe component. Once a recipe is
selected, control is passed to the associated recipe object. A recipe must contain
certain information. Basically, it consists of a list of ingredients and the steps
needed to transform the ingredients into the �nal product. In our scenario, the
recipe component must also perform other activities. For example, it will display
the recipe interactively on the terminal screen. The user may be given the ability
to annotate or change either the list of ingredients or the instruction portion.
Alternatively, the user may request a printed copy of the recipe. All of these
actions are the responsibility of the Recipe component. (For the moment, we will
continue to describe the Recipe in singular form. During design we can think of
this as a prototypical recipe that stands in place of a multitude of actual recipes.
We will later return to a discussion of singular versus multiple components.)

Having outlined the actions that must take place to permit the user to browse
the database, we return to the recipe database manager and pretend the user
has indicated a desire to add a new recipe. The database manager somehow
decides in which category to place the new recipe (again, the details of how this
is done are unimportant for our development at this point), requests the name of
the new recipe, and then creates a new recipe component, permitting the user to
edit this new blank entry. Thus, the responsibilities of performing this new task
are a subset of those we already identi�ed in permitting users to edit existing
recipes.

Having explored the browsing and creation of new recipes, we return to the
Greeter and investigate the development of daily menu plans, which is the Plan
Manager's task. In some way (again, the details are unimportant here) the
user can save existing plans. Thus, the Plan Manager can either be started
by retrieving an already developed plan or by creating a new plan. In the
latter case, the user is prompted for a list of dates for the plan. Each date is
associated with a separateDate component. The user can select a speci�c date for
further investigation, in which case control is passed to the corresponding Date
component. Another activity of the Plan Manager is printing out the recipes for
the planning period. Finally, the user can instruct the Plan Manager to produce
a grocery list for the period.

The Date component maintains a collection of meals as well as any other an-
notations provided by the user (birthday celebrations, anniversaries, reminders,
and so on). It prints information on the display concerning the speci�ed date.
By some means (again unspeci�ed), the user can indicate a desire to print all
the information concerning a speci�c date or choose to explore in more detail a



3.6. COMPONENTS AND BEHAVIOR 61

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

Plan Manager

Date

Greeter

Recipe Database

Meal Recipe

�
�

@@

HHH

HHHH

�
�
�

Q
Q
Q
QQ

Figure 3.4: { Communication between the six components in the IIKH.

speci�c meal. In the latter case, control is passed to a Meal component.

The Meal component maintains a collection of augmented recipes, where the
augmentation refers to the user's desire to double, triple, or otherwise increase a
recipe. The Meal component displays information about the meal. The user can
add or remove recipes from the meal, or can instruct that information about the
meal be printed. In order to discover new recipes, the user must be permitted
at this point to browse the recipe database. Thus, the Meal component must
interact with the recipe database component. The design team will continue
in this fashion, investigating every possible scenario. The major category of
scenarios we have not developed here is exceptional cases. For example, what
happens if a user selects a number of keywords for a recipe and no matching recipe
is found? How can the user cancel an activity, such as entering a new recipe, if
he or she decides not to continue? Each possibility must be explored, and the
responsibilities for handling the situation assigned to one or more components.

Having walked through the various scenarios, the software design team even-
tually decides that all activities can be adequately handled by six components
(Figure 3.4). The Greeter needs to communicate only with the Plan Manager and
the Recipe Database components. The Plan Manager needs to communicate only
with the Date component; and the Date agent, only with the Meal component.
The Meal component communicates with the Recipe Manager and, through this
agent, with individual recipes.

3.6.4 Interaction Diagrams

While a description such as that shown in Figure 3.4 may describe the static re-
lationships between components, it is not very good for describing their dynamic
interactions during the execution of a scenario. A better tool for this purpose is
an interaction diagram. Figure 3.5 shows the beginning of an interaction diagram
for the interactive kitchen helper. In the diagram, time moves forward from the



62 CHAPTER 3. OBJECT-ORIENTED DESIGN

Greeter Database Recipe Planner Comment

Message browse()-

Message display()-

Return from display()�

Return from browse()�

Message makePlan()-

Figure 3.5: { An Example interaction diagram.

top to the bottom. Each component is represented by a labeled vertical line. A
component sending a message to another component is represented by a hori-
zontal arrow from one line to another. Similarly, a component returning control
and perhaps a result value back to the caller is represented by an arrow. (Some
authors use two di�erent arrow forms, such as a solid line to represent message
passing and a dashed line to represent returning control.) The commentary on
the right side of the �gure explains more fully the interaction taking place.

With a time axis, the interaction diagram is able to describe better the se-
quencing of events during a scenario. For this reason, interaction diagrams can
be a useful documentation tool for complex software systems.

3.7 Software Components

In this section we will explore a software component in more detail. As is true
of all but the most trivial ideas, there are many aspects to this seemingly simple
concept.

3.7.1 Behavior and State

We have already seen how components are characterized by their behavior, that
is, by what they can do. But components may also hold certain information.
Let us take as our prototypical component a Recipe structure from the IIKH.
One way to view such a component is as a pair consisting of behavior and state.

� The behavior of a component is the set of actions it can perform. The
complete description of all the behavior for a component is sometimes



3.7. SOFTWARE COMPONENTS 63

called the protocol. For the Recipe component this includes activities such
as editing the preparation instructions, displaying the recipe on a terminal
screen, or printing a copy of the recipe.

� The state of a component represents all the information held within it
at a given point of time. For our Recipe component the state includes the
ingredients and preparation instructions. Notice that the state is not static
and can change over time. For example, by editing a recipe (a behavior)
the user can make changes to the preparation instructions (part of the
state).

It is not necessary that all components maintain state information. For ex-
ample, it is possible that the Greeter component will not have any state since
it does not need to remember any information during the course of execution.
However, most components will consist of a combination of behavior and state.

3.7.2 Instances and Classes

The separation of state and behavior permits us to clarify a point we avoided
in our earlier discussion. Note that in the real application there will probably
be many di�erent recipes. However, all of these recipes will perform in the same
manner. That is, the behavior of each recipe is the same; it is only the state{
the individual lists of ingredients and instructions for preparation{that di�ers
between individual recipes. In the early stages of development our interest is in
characterizing the behavior common to all recipes; the details particular to any
one recipe are unimportant.

The term class is used to describe a set of objects with similar behavior. We
will see in later chapters that a class is also used as a syntactic mechanism in
almost all object-oriented languages. An individual representative of a class is
known as an instance. Note that behavior is associated with a class, not with an
individual. That is, all instances of a class will respond to the same instructions
and perform in a similar manner. On the other hand, state is a property of an
individual. We see this in the various instances of the class Recipe. They can all
perform the same actions (editing, displaying, printing) but use di�erent data
values.

3.7.3 Coupling and Cohesion

Two important concepts in the design of software components are coupling and
cohesion. Cohesion is the degree to which the responsibilities of a single com-
ponent form a meaningful unit. High cohesion is achieved by associating in a
single component tasks that are related in some manner. Probably the most
frequent way in which tasks are related is through the necessity to access a com-
mon data value. This is the overriding theme that joins, for example, the various
responsibilities of the Recipe component.



64 CHAPTER 3. OBJECT-ORIENTED DESIGN

Coupling, on the other hand, describes the relationship between software
components. In general, it is desirable to reduce the amount of coupling as
much as possible, since connections between software components inhibit ease of
development, modi�cation, or reuse.

In particular, coupling is increased when one software component must access
data values{the state{held by another component. Such situations should almost
always be avoided in favor of moving a task into the list of responsibilities of the
component that holds the necessary data. For example, one might conceivably
�rst assign responsibility for editing a recipe to the Recipe Database component,
since it is while performing tasks associated with this component that the need to
edit a recipe �rst occurs. But if we did so, the Recipe Database agent would need
the ability to directly manipulate the state (the internal data values representing
the list of ingredients and the preparation instructions) of an individual recipe.
It is better to avoid this tight connection by moving the responsibility for editing
to the recipe itself.

3.7.4 Interface and Implementation{Parnas's Principles

The emphasis on characterizing a software component by its behavior has one
extremely important consequence. It is possible for one programmer to know
how to use a component developed by another programmer, without needing to
know how the component is implemented. For example, suppose each of the six
components in the IIKH is assigned to a di�erent programmer. The programmer
developing the Meal component needs to allow the IIKH user to browse the
database of recipes and select a single recipe for inclusion in the meal. To do
this, the Meal component can simply invoke the browse behavior associated with
the Recipe Database component, which is de�ned to return an individual Recipe.
This description is valid regardless of the particular implementation used by the
Recipe Database component to perform the actual browsing action.

The purposeful omission of implementation details behind a simple interface
is known as information hiding. We say the component encapsulates the behav-
ior, showing only how the component can be used, not the detailed actions it
performs. This naturally leads to two di�erent views of a software system. The
interface view is the face seen by other programmers. It describes what a soft-
ware component can perform. The implementation view is the face seen by the
programmer working on a particular component. It describes how a component
goes about completing a task.

The separation of interface and implementation is perhaps the most impor-
tant concept in software engineering. Yet it is di�cult for students to understand,
or to motivate. Information hiding is largely meaningful only in the context of
multiperson programming projects. In such e�orts, the limiting factor is often
not the amount of coding involved, but the amount of communication required
between the various programmers and between their respective software systems.
As we will describe shortly, software components are often developed in parallel
by di�erent programmers, and in isolation from each other.



3.8. FORMALIZE THE INTERFACE 65

There is also an increasing emphasis on the reuse of general-purpose software
components in multiple projects. For this to be successful, there must be minimal
and well-understood interconnections between the various portions of the system.
As we noted in the previous chapter, these ideas were captured by computer
scientist David Parnas in a pair of rules, known as Parnas's principles:

� The developer of a software component must provide the intended user with
all the information needed to make e�ective use of the services provided
by the component, and should provide no other information.

� The developer of a software component must be provided with all the
information necessary to carry out the given responsibilities assigned to
the component, and should be provided with no other information.

A consequence of the separation of interface from implementation is that a
programmer can experiment with several di�erent implementations of the same
structure without a�ecting other software components.

3.8 Formalize the Interface

We continue with the description of the IIKH development. In the next several
steps the descriptions of the components will be re�ned. The �rst step in this
process is to formalize the patterns and channels of communication.

A decision should be made as to the general structure that will be used to im-
plement each component. A component with only one behavior and no internal
state may be made into a function{for example, a component that simply takes
a string of text and translates all capital letters to lowercase. Components with
many tasks are probably more easily implemented as classes. Names are given to
each of the responsibilities identi�ed on the CRC card for each component, and
these will eventually be mapped onto method names. Along with the names, the
types of any arguments to be passed to the function are identi�ed. Next, the
information maintained within the component itself should be described. All in-
formation must be accounted for. If a component requires some data to perform
a speci�c task, the source of the data, either through argument or global value,
or maintained internally by the component, must be clearly identi�ed.

3.8.1 Coming up with Names

Careful thought should be given to the names associated with various activities.
Shakespeare said that a name change does not alter the object being described,
but certainly not all names will conjure up the same mental images in the listener.
As government bureaucrats have long known, obscure and idiomatic names can
make even the simplest operation sound intimidating. The selection of useful
names is extremely important, as names create the vocabulary with which the
eventual design will be formulated. Names should be internally consistent, mean-
ingful, preferably short, and evocative in the context of the problem. Often a



66 CHAPTER 3. OBJECT-ORIENTED DESIGN

considerable amount of time is spent �nding just the right set of terms to de-
scribe the tasks performed and the objects manipulated. Far from being a barren
and useless exercise, proper naming early in the design process greatly simpli�es
and facilitates later steps.

The following general guidelines have been suggested:

� Use pronounceable names. As a rule of thumb, if you cannot read a name
out loud, it is not a good one.

� Use capitalization (or underscores) to mark the beginning of a new word
within a name, such as \CardReader" or \Card reader," rather than the
less readable \cardreader."

� Examine abbreviations carefully. An abbreviation that is clear to one per-
son may be confusing to the next. Is a \TermProcess" a terminal process,
something that terminates processes, or a process associated with a termi-
nal?

� Avoid names with several interpretations. Does the empty function tell
whether something is empty, or empty the values from the object?

� Avoid digits within a name. They are easy to misread as letters (0 as O,
1 as l, 2 as Z, 5 as S).

� Name functions and variables that yield Boolean values so they describe
clearly the interpretation of a true or false value. For example, \Printer-
IsReady" clearly indicates that a true value means the printer is working,
whereas \PrinterStatus" is much less precise.

� Take extra care in the selection of names for operations that are costly and
infrequently used. By doing so, errors caused by using the wrong function
can be avoided.

Once names have been developed for each activity, the CRC cards for each
component are redrawn, with the name and formal arguments of the function
used to elicit each behavior identi�ed. An example of a CRC card for the Date
is shown in Figure 3.6. What is not yet speci�ed is how each component will
perform the associated tasks.

Once more, scenarios or role playing should be carried out at a more de-
tailed level to ensure that all activities are accounted for, and that all necessary
information is maintained and made available to the responsible components.

3.9 Designing the Representation

At this point, if not before, the design team can be divided into groups, each
responsible for one or more software components. The task now is to transform
the description of a component into a software system implementation. The



3.10. IMPLEMENTING COMPONENTS 67

Date Collaborators

Plan Manager

Meal
Maintain information about speci�c date

Date(year, month, day){create new date

DisplayAndEdit(){display date information

in window allowing user to edit entries

BuildGroceryList(List &){add items from

all meals to grocery list

Figure 3.6: { Revised CRC card for the Date component.

major portion of this process is designing the data structures that will be used by
each subsystem to maintain the state information required to ful�ll the assigned
responsibilities.

It is here that the classic data structures of computer science come into play.
The selection of data structures is an important task, central to the software
design process. Once they have been chosen, the code used by a component in
the ful�llment of a responsibility is often almost self-evident. But data structures
must be carefully matched to the task at hand. A wrong choice can result in
complex and ine�cient programs, while an intelligent choice can result in just
the opposite.

It is also at this point that descriptions of behavior must be transformed
into algorithms. These descriptions should then be matched against the expec-
tations of each component listed as a collaborator, to ensure that expectations
are ful�lled and necessary data items are available to carry out each process.

3.10 Implementing Components

Once the design of each software subsystem is laid out, the next step is to
implement each component's desired behavior. If the previous steps were cor-
rectly addressed, each responsibility or behavior will be characterized by a short
description. The task at this step is to implement the desired activities in a com-
puter language. In a later section we will describe some of the more common



68 CHAPTER 3. OBJECT-ORIENTED DESIGN

heuristics used in this process.

If they were not determined earlier (say, as part of the speci�cation of the
system), then decisions can now be made on issues that are entirely self-contained
within a single component. A decision we saw in our example problem was how
best to let the user browse the database of recipes.

As multiperson programming projects become the norm, it becomes increas-
ingly rare that any one programmer will work on all aspects of a system. More
often, the skills a programmer will need to master are understanding how one
section of code �ts into a larger framework and working well with other members
of a team.

Often, in the implementation of one component it will become clear that
certain information or actions might be assigned to yet another component that
will act \behind the scene," with little or no visibility to users of the software
abstraction. Such components are sometimes known as facilitators. We will see
examples of facilitators in some of the later case studies.

An important part of analysis and coding at this point is characterizing and
documenting the necessary preconditions a software component requires to com-
plete a task, and verifying that the software component will perform correctly
when presented with legal input values.

3.11 Integration of Components

Once software subsystems have been individually designed and tested, they can
be integrated into the �nal product. This is often not a single step, but part of
a larger process. Starting from a simple base, elements are slowly added to the
system and tested, using stubs{simple dummy routines with no behavior or with
very limited behavior{for the as yet unimplemented parts.

For example, in the development of the IIKH, it would be reasonable to start
integration with the Greeter component. To test the Greeter in isolation, stubs are
written for the Recipe Databasemanager and the dailyMeal Planmanager. These
stubs need not do any more than print an informative message and return. With
these, the component development team can test various aspects of the Greeter
system (for example, that button presses elicit the correct response). Testing of
an individual component is often referred to as unit testing.

Next, one or the other of the stubs can be replaced by more complete code.
For example, the team might decide to replace the stub for the Recipe Database
component with the actual system, maintaining the stub for the other portion.
Further testing can be performed until it appears that the system is working as
desired. (This is sometimes referred to as integration testing.)

The application is �nally complete when all stubs have been replaced with
working components. The ability to test components in isolation is greatly facili-
tated by the conscious design goal of reducing connections between components,
since this reduces the need for extensive stubbing.

During integration it is not uncommon for an error to be manifested in one



3.12. MAINTENANCE AND EVOLUTION 69

software system, and yet to be caused by a coding mistake in another system.
Thus, testing during integration can involve the discovery of errors, which then
results in changes to some of the components. Following these changes the com-
ponents should be once again tested in isolation before an attempt to reintegrate
the software, once more, into the larger system. Reexecuting previously devel-
oped test cases following a change to a software component is sometimes referred
to as regression testing.

3.12 Maintenance and Evolution

It is tempting to think that once a working version of an application has been
delivered the task of the software development team is �nished. Unfortunately,
that is almost never true. The term software maintenance describes activities
subsequent to the delivery of the initial working version of a software system. A
wide variety of activities fall into this category.

� Errors, or bugs, can be discovered in the delivered product. These must
be corrected, either in updates or corrections to existing releases or in
subsequent releases.

� Requirements may change, perhaps as a result of government regulations
or standardization among similar products.

� Hardware may change. For example, the system may be moved to di�erent
platforms, or input devices, such as a pen-based system or a pressure-
sensitive touch screen, may become available. Output technology may
change{for example, from a text-based system to a graphical window-based
arrangement.

� User expectations may change. Users may expect greater functionality,
lower cost, and easier use. This can occur as a result of competition with
similar products.

� Better documentation may be requested by users.

A good design recognizes the inevitability of changes and plans an accommo-
dation for them from the very beginning.

Chapter Summary

In this chapter we have presented a very abbreviated introduction to the basic
ideas of object-oriented modeling and design. References in the following section
can be consulted for more detailed discussion of this topic.

Object-oriented design di�ers from conventional software design in that the
driving force is the assignment of responsibilities to di�erent software compo-
nents. No action will take place without an agent to perform the action, and



70 CHAPTER 3. OBJECT-ORIENTED DESIGN

hence every action must be assigned to some member of the object community.
Conversely, the behavior of the members of the community taken together must
be su�cient to achieve the desired goal.

The emphasis on behavior is a hall-mark of object-oriented programming.
Behavior can be identi�ed in even the most rudimentary descriptions of a system,
long before any other aspect can be clearly discerned. By constantly being
driven by behavior, responsibility driven design moves smoothly from problem
description to software architecture to code development to �nished application.

Further Reading

Responsibility-driven design was developed and �rst described by Rebecca Wirfs-
Brock [Wirfs-Brock 1989b, Wirfs-Brock 1990]. There are many other object-
oriented design techniques, such as that of Jacobson [Jacobson 1994] or Rum-
baugh [Rumbaugh 1991], but I like responsibility-driven design because it is
among the simplest to explain, and is therefore a good introduction to object-
oriented design and modeling.

Much of the most recent work in the �eld of object-oriented design has cen-
tered on UML, the Uni�ed Modeling Language. I are not going to discuss UML
in detail in this book, although I do use some of their notation in describing
class diagrams. A good introduction to UML is [Booch 1999]. A slightly simpler
explanation is found in [Alhir 1998].

Other good books on object-oriented design include [Rumbaugh 1991] and
[Henderson-Sellers 1992].

CRC cards were developed by Beck [Beck 1989]. A more in-depth book-
length treatment of the idea is [Bellin 1997].

Parnas's principles were �rst presented in [Parnas 1972].

The guidelines on names presented in Section 3.8.1 are from [Keller 1990].
The Shakespeare reference in that same section is to Romeo and Juliet, Act II,
Scene 2:

What's in a name?
That which we call a rose,
by any other name would smell as sweet;
So Romeo would, were he not Romeo call'd,
retain that dear perfection which he owes without that title.

Self Study Questions

1. What are the key features of responsibility-driven design?

2. What are some key di�erences between programming in-the-small and pro-
gramming in-the-large?



EXERCISES 71

3. Why can a design technique based on behavior be applied more easily to
poorly-de�ned problems than can, say, a design approach based on data
structures?

4. What is a scenario?

5. What are the basic elements of a component?

6. What is a CRC card? What do the letters stand for?

7. What is the what/who cycle?

8. Why should a user manual be developed before coding begins?

9. What are the major sources of change that can be expected during the
lifetime of most long-lived software applications?

10. What information is conveyed by an interaction diagram?

11. What are Parnas's principles?

12. Why is the selection of good names an important aspect of a successful
software design e�ort? What are some guidelines for choosing names?

13. What is integration testing?

14. What is software maintenance?

Exercises

1. Describe the responsibilities of an organization that includes at least six
types of members. Examples of such organizations are a school (students,
teachers, principal, janitor), a business (secretary, president, worker), and a
club (president, vice-president, member). For each member type, describe
the responsibilities and the collaborators.

2. Create a scenario for the organization you described in Exercise 1 using an
interaction diagram.

3. For a common game such as solitaire or twenty-one, describe a software
system that will interact with the user as an opposing player. Example
components include the deck and the discard pile.

4. Describe the software system to control an ATM (Automated Teller Ma-
chine). Give interaction diagrams for various scenarios that describe the
most common uses of the machine.


