
2016.1 Human Media Multicore Computing

Project 3: CUDA/OpenMP Ray-Tracing (Team Project)

(Deadline : June 13th 11:59pm)

Summision method : eClass

 - All students need to submit a zip file containing (i) final report, (ii) source code, (iii) executable

code, (iv) README.txt

 - The leader of each team needs to submit DEMO video file in addition to above (i)~(iv) items.

Step 1. make a team

 - team size : 1~4 members

Step 2. Implementing two versions of Ray-Tracing that utilizes CUDA and OpenMP

 - Look at the partial CUDA code of ray-tracing of random spheres available on our class webpage.

 and modify the code for your purpose.

 - You may assume the simplest form of Ray tracing that renders a scene with only spheres.

 - Program input :

 (i) [option]: 0 means using CUDA, 1~16 means using OpenMP with 1~16 threads

 (ii) [output filename]

 - Program output :

 (i) print ray-tracing processing time of your program using OpenMP or CUDA

 (ii) generate image file (format: .ppm or .bmp, image size: 2048X2048) that shows the rendering

 result

 Execution example 1) > a.out 0 result.ppm

 CUDA ray tracing: 0.15 sec

 [result.ppm] was generated.

 Execution example 2) > a.out 8 result.ppm

 OpenMP (8 threads) ray tracing: 0.41 sec

 [result.ppm] was generated.

Step 3. write a final report (pdf) that includes

 - project title, member list (name and student id)

 - execution : describe (i) execution environment (OS type, CPU type, grahics card/GPU type,

memory size) (ii) how to compile, (iii) how to execute

 - your group’s contribution (describe exactly what your group actually did for this project)

 - entire source code and detailed explanation on the OpenMP code and CUDA code

 - other implementation issues (describe how you implemented)

 - program output results including screen capture pictures.

 - experimental results : measuring the performance (execution time) of your OpenMP/CUDA

implementation and your single threaded CPU implementation. show the performance results and

screen capture of output results.

 - conclusion : summarize your project result

Step 4. submission (to eClass)

Ÿ final report (should include a list of team members with student ID#)

Ÿ source code files

Ÿ executable file

Ÿ README.txt file (describe (i) execution envionment (OS type, CPU type, GPU type, memory

size) (ii) how to compile, (iii) how to execute)

Ÿ DEMO Video file in .mp4 or .avi format (Only team leader needs to submit this) : video-record

processes of (a) program compilation, (b) execution and (iii) results including execution times

and rendering images

